Friday, November 14, 2014

Our New ARC Grant on Motor Performance and Ageing

If you thought turning 30 was bad, you're not going to like this. 

We lose more than 0.5% of our muscle mass each year after 30, which decreases our ability to run, jump, swim and perform virtually any motor task. Age-related muscle loss (known as sarcopenia) increases our risk of dying due to injury and even illness, as the proteins in our muscles are a major source of fuel for our immune systems.

elderly sea gypsy weaves nets in Phuket, Thailand

Luckily, there's a simple solution to the problem: getting off the couch.

Exercise improves the efficiency of muscle metabolism and makes muscles more protein-dense, which helps slow ageing. We live longer, healthier lives. 

bike riding in Galle, Sri Lanka

For humans, motor ageing affects the quality and length of life. But what about animals? In nature, motor function literally means life or death, as individuals have to escape predators and catch prey to survive. They also have to find mates to reproduce. They have to run over varied terrain, in the night or day, driving rain or blazing sun, with varied body sizes and shapes. Males may have dangling testicles, females may have dangling babies. And they have to do all this while avoiding catastrophic injury. 

Last week, our research team - A/Prof Robbie Wilson, Dr Diana Fisher, Dr Hamish Campbell, Dr Celine Frere and me - got a major grant from the Australian Research Council to study a critical aspect of animal performance: how an animal's habitat affects its motor development and ageing

well-endowed male antechinus  

What does habitat have to do with anything? We believe that within a species, individuals living in more-complex (i.e. rocky or diverse or steep) environments will have better motor function and slower motor ageing than those living in simpler (flat or unvaried) environments. This will help them live longer and produce more offspring.

Over the next 3 years, we'll be testing these ideas on small mammals - including quolls and antechinus - both in the wild and in captivity. At our field sites, we'll use GPS trackers to understand how animals use complex versus simple habitats, and how this affects their motor performance, ageing and mating. At our research facility, we'll raise animals in complex versus simple habitats to measure differences in performance, muscle physiology and mating success between environments and over lifetimes. 

male antechinus

Our study will show how habitat use affects motor performance and ageing in wild animals, which is key to their conservation. But more than that, we hope to shed light on a new way of thinking about motor rehabilitation. Over 50% of elderly people will experience debilitating muscle loss in their lifetimes, yet little is known about how the complexity of movement affects muscle quality.

So this is some of what we'll be doing these next few years! If you're interested in collaborating, volunteering or learning more, please get in touch - we'd love to hear from you. (amandacniehaus@gmail.com or a.niehaus@uq.edu.au)

*This post was originally published here.

Friday, May 30, 2014

From the field: Studying endangered northern quolls on Groote Eylandt

- by Rebecca Wheatley

It's a new year, which means there's new research to be done as I delve into my PhD. But before I start writing about that, I want to write about a somewhat related experience I was lucky enough to have last year.

In August/September, I got to join my labmates Ami, Jaime and Gwen up on Groote Eylandt, which is a large island off the coast of the Northern Territory owned and run by the Anindilyakwa people. The reason:
to help them out with their research on the endangered Northern Quoll (Dasyurus hallucatus).

Catwoman, a pretty little female Northern Quoll (Dasyurus hallucatus). 

Now, if you’ve ever been to Australia, you probably have heard the story of the Cane Toad (Rhinella marina) – even if it’s just via one of the many delightful novelty souvenirs available in Australian tourist shops.

A classy addition to any accessory collection. Image credit: Wikimedia Commons. 

The cane toad is an extremely successful invasive species that was introduced into Australia in 1935 to eat a beetle that was negatively affecting the cane industry (which it didn’t), and since then it has spread down the East coast and across the Northern Territory, and is slowly making its way down the West coast as well. One of the reasons Groote Eylandt is so amazing is because it is one of the few areas up North that has remained cane toad-free. Because of this exclusion, it is the last stronghold population of the endangered Northern Quoll, whose numbers have been decimated via their predation on this toxic species. This makes Groote an ideal location to study the quoll in its natural habitat, as numbers are high enough for recapture studies to generate useful amounts of data.

A magical sunset in the bush next to the highway to Umbakumba.

I was on Groote Eylandt for 5 weeks helping Ami with data collection for her PhD project. As well as stunning landscapes and amazing native animals, Groote Eylandt is also home to a large manganese mine. All animals need some amount of manganese to function, but like any heavy metal it can be toxic in high concentrations. For her PhD, Ami is looking at how quolls from different parts of the island (that have been exposed to different amounts of manganese) perform in motor control and cognitive function tests. We are lucky enough to have access to laboratory facilities at the Anindilyakwa Land and Sea Ranger Station, where we get to work with the Rangers to figure out how to do our research in a way that is compatible with indigenous culture.

Ami measuring one of our little darlings. 

We went out every night and set 30-60 traps in one of our three trapping areas various distances from the manganese mine, which we then checked first thing the next morning. If we were lucky, we’d see white spots and hear some angry growling – otherwise it was rather likely that we’d caught one of the other marsupials that populate the area. We then transported our precious bundles back to the lab at the Anindilyakwa Ranger Station where we sexed them, weighed them, took various morphological measures and a hair sample (to get their internal manganese concentration from) and pit- and ear-tagged them.

Alfred, a feisty (and adorable) little male. 

Lastly, we’d gather information on their level of motor control. I won’t give away too many details, but we basically assessed their performance at various speeds and analysed how many mistakes they made depending on the difficulty of the task and the speed at which they performed it. We would expect that as speed and/or “difficulty” of the task increases, the quolls will make more mistakes. The reasons for this are very intuitive and you will probably have observed them in your own life; as you do things faster you have less control over your movements and are more likely to make an error. Similarly, if a task is difficult, you’re more likely to make a mistake than if it’s relatively easy. What Ami wants to know is whether the manganese concentration the quoll has been exposed to enhances this effect – i.e., whether high manganese concentrations affect motor control.

Back to the bush you go. 

Ami also wants to look at whether manganese concentration affects cognitive function in the quolls – but that’s for her to write about! She’ll continue to run these experiments for the next two years, and hopefully get some excellent results. I was very lucky to be involved in helping out with this project, as many of the techniques she used will be helpful in my own PhD.

Having a sniff out of the corner of his bag. 

Although quolls were the main attraction for us, Groote Eylandt has plenty of other amazing qualities that made my trip there one of the most memorable ventures into the field that I’ve ever had. We are extremely privileged to be able to conduct research there, and I learned more about indigenous culture than I ever thought I would. I also saw loads of awesome animals and plants, and got to spend a lot of time in the field – which is definitely one of the best ways to spend it.

A Mertens' Water Monitor (Varanus mertensi) chilling by Milyerrngmurramaja (the "Naked Pools"). These guys are also threatened by ingestion of the cane toads. 
A Striated Pardalote (Pardalotus striatus) that was nesting next to the Anindilyakwa Ranger Station.
A Burton's Legless Lizard (Lialis burtonis) we found while we were setting traps near Alyangula.
A Helmeted Friarbird (Philemon buceroides) next to the highway to Umbakumba. 
I’d like to say a huge thank-you to my lab for this opportunity, but most especially to Ami, Jaime and Gwen for teaching me so many new skills and being the best bush-buddies ever. I’m looking forward to future adventures with the Wilson Performance Lab as I start my PhD on another kind of carnivorous marsupial… the Yellow-footed Antechinus (Antechinus flavipes)!

Sunset on the beach at Ayangkwa ("Tasman Point"). 

All images by Rebecca Wheatley unless otherwise credited.

Tuesday, March 4, 2014

UQ CIEF Grant awarded to the Performance Lab

- by Robbie Wilson

Last week I travelled back to Groote Eylandt to sign off on a collaborative research project with the Anindilyakwa Land Council worth $375,000 over the next two years. This supports an important project and recognizes our strengthening relationship with the people of Groote Eylandt with whom we've been working for the last five years. 

Indigenous dugong painting on Groote Eylandt
 
For our UQ-CIEF grant we'll be exploring the possible toxic effects of manganese from the local mining operations on the wildlife of Groote Eylandt. Groote hosts one of the world’s largest Mn mines - and despite considerable financials rewards for the local community, many locals are becoming increasingly concerned about the long-term impacts of Mn contamination for their environment. The toxic effects of Mn usually manifest in animals by affecting their cognitive and motor function, which places our research group in a unique position to tackle this research.

We'll examine the pattern of Mn accumulation in the local wildlife and then test whether any increased Mn affects motor function in our primary study animal, the northern quoll. This species offers a perfect model system because it is highly abundant across the island – both close and far from the mining operations – and we can easily adapt tests of motor control from protocols used in biomedical studies of rats and mice.

Groote Eylandt field work

Ami (PhD student) and Skye (Researcher) will be the main team members working on this project but, as always, everyone in the lab will contribute to the smooth running of the work. There is never a shortage of volunteers offering help!! We’re all excited about continuing our work with the Indigenous Rangers of Groote Eylandt and we hope they get as much out of our collaboration as we all do. My feeling is that you haven’t graduated as an Australian ecologist (or zoologist) until you’ve wandered through the bush with a real local and seen the land through their eyes. 

Thanks again to the Anindilyakwan people for their on-going trust and acceptance of our research team. We look forward to the season ahead.
Robbie 

I spent a late afternoon wandering rocky landscapes and avoiding crocodiles